Improving Reversible Capacities of High-Surface Lithium Insertion Materials – The Case of Amorphous TiO2
نویسندگان
چکیده
*Correspondence: Marnix Wagemaker , Fundamental Aspects of Materials and Energy, Department of Radiation, Radionucleides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, Delft 2629 JB, Netherlands e-mail: [email protected] Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nano-structured electrodes remains a contributing factor toward capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here, we report a marked improvement in the capacity retention of amorphousTiO2 by the choice of preparation solvent, control of annealing temperature, and the presence of surface functional groups. Careful heating of the amorphousTiO2 sample prepared in acetone under vacuum lead to complete removal of all molecular solvent and an improved capacity retention of 220 mAh/g over 50 cycles at a C/10 rate. Amorphous TiO2 when prepared in ethanol and heated under vacuum showed an even better capacity retention of 240 mAh/g. From Fourier transform infra-red spectroscopy and electron energy loss spectroscopy measurements, the improved capacity is attributed to the complete removal of ethanol and the presence of very small fractions of residual functional groups coordinated to oxygen-deficient surface titanium sites. These displace the more reactive chemisorbed hydroxyl groups, limiting reaction with components from the electrolyte and possibly enhancing the integrity of the solid electrolyte interface. The present research provides a facile strategy to improve the capacity retention of nano-structured electrode materials.
منابع مشابه
Phases Hybriding and Hierarchical Structuring of Mesoporous TiO2 Nanowire Bundles for High‐Rate and High‐Capacity Lithium Batteries
A hierarchical mesoporous TiO2 nanowire bundles (HM-TiO2-NB) superstructure with amorphous surface and straight nanochannels has been designed and synthesized through a templating method at a low temperature under acidic and wet conditions. The obtained HM-TiO2-NB superstructure demonstrates high reversible capacity, excellent cycling performance, and superior rate capability. Most importantly,...
متن کاملMorphology-controlled construction of hierarchical hollow hybrid SnO2@TiO2 nanocapsules with outstanding lithium storage
A novel synthesis containing microwave-assisted HCl etching reaction and precipitating reaction is employed to prepare hierarchical hollow SnO2@TiO2 nanocapsules for anode materials of Li-ion batteries. The intrinsic hollow nanostructure can shorten the lengths for both ionic and electronic transport, enlarge the electrode surface areas, and improving accommodation of the anode volume change du...
متن کاملNanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities
Germanium nanocrystals ~12 nm mean diam! and amorphous thin films ~60-250 nm thick! were prepared as anodes for lithium secondary cells. Amorphous thin film electrodes prepared on planar nickel substrates showed stable capacities of 1700 mAh/g over 60 cycles. Germanium nanocrystals showed reversible gravimetric capacities of up to 1400 mAh/g with 60% capacity retention after 50 cycles. Both ele...
متن کاملThe effect of polyaniline on TiO2 nanoparticles as anode materials for lithium ion batteries
Polyaniline (PANI) additives have been shown to have a significant effect on titanium dioxide (TiO2) nanoparticles as lithium ion battery anode materials. TiO2/PANI composites were prepared using a solid coating method with different ratios of PANI and then characterized using XRD and SEM. These composites have shown increased reversible capacity compared with pure TiO2. At the current rate of ...
متن کاملLithium insertion in nanostructured TiO(2)(B) architectures.
Electric vehicles and grid storage devices have potentialto become feasible alternatives to current technology, but only if scientists can develop energy storage materials that offer high capacity and high rate capabilities. Chemists have studied anatase, rutile, brookite and TiO2(B) (bronze) in both bulk and nanostructured forms as potential Li-ion battery anodes. In most cases, the specific c...
متن کامل